
Chef Basic Training
(English version)

RYUZEE.COM

About RYUZEE.COM
✤ Consulting Service Provider
✤ Agile Development / DevOps / Cloud Computing
✤ http://www.ryuzee.com

http://ryuzee.com
http://www.ryuzee.com

What is DevOps?

Current Challenges
✤ Business changes faster
✤ IT becomes a key element for business
✤ Delivering good software to customer is critical for business
✤ However, the speed of delivery is too slow and error prone
(especially in traditional or large companies…)

✤ This causes the lost of chance and money in business
✤ Or you have your own issues
✤ IT often becomes Bottleneck

Muda

✤ 64 % of all features were rarely
or never used (Excerpt from The
Standish Group “Chaos” report
2002).

✤ You can imagine it by taking your
computer’s builtin softwares’
usage into consideration…

Always	
7%

Some.mes	
16%

O2en	
13%

Rarely	
19%

Never	
45%

Seven types of Waste
✤Waste of over-production

✤Waste of waiting

✤Waste of transportation

✤Waste of processing

✤Waste of inventory

✤Waste of motion

✤Waste of making defects

“It’s difficult to know right things or future in advance.
It’s important to have a capability to catch up with

fast changes.”

Building fast feedback cycle

Build

Le
ar
n

Me
asu

re

This	is	not	only	for	

Conflict between Dev and Ops

✤ Differences of mission and responsibility (Who decides them…?
Reasonable?)

✤ It’s not my business (Says who?)

✤ Silo

✤ It creates overhead and slows down your business result

✤Ops who think like
devs.

✤ Devs who think like
ops.

You	build	it,	You	run	it

Werner	Vogels,	CTO,	amazon.com

http://amazon.com

DevOps intends…

✤ DevOps intends to achieve business results, to enhance business
agility and to avoid or reduce business risks by leveraging
culture and tool.

Five Aspects

✤ Culture

✤ Lean

✤ Automation

✤ Measurement

✤ Sharing

Why do we need
Infrastructure as Code?

Challenges in manual provisioning

✤ It takes longer time when the number of target servers increases

✤ Procedure documents or check lists is not maintained and kept
updated

✤ Document driven manual operation causes mis-operation

✤ Documents can not be re-used across organisation

Imagine it…

Benefits of Infrastructure as Code
✤ The duration of provisioning is almost tranquil

✤ Code equals to “Procedure Document”. Only you need to do is to
keep the code updated

✤ Code runs as it wrote. Same code bring us a same server

✤ Code can be tested continuously by using CI tools

✤ High reusability

How to automate infrastructure

There are several ways to automate

✤ Shell Script

✤ Capistrano or other deploy tools

✤ Provisioning tools such as Chef / Puppet / Ansible

Shell Script

✤ Simplest way

✤ However long script that
includes conditional
statements can not be
maintained easily

#!/bin/sh

yum install -y httpd httpd-devel php php-
mbstring php-pdo php-mysql mysql-server

/sbin/chkconfig --level 2345 httpd on

/sbin/chkconfig --level 2345 mysqld on

/etc/rc.d/init.d/mysqld start

/etc/rc.d/init.d/httpd start

Deploy Tool (Capistrano)
✤ Capistrano or other
deploy tools intend to be
used for application
deployment

✤ Of course, It’s not
impossible to automate
infrastructure
provisioning by deploy
tools…

task :install_amp, roles => :web do

 run <<-CMD

 sudo yum install -y httpd httpd-devel php php-
mbstring php-pdo php-mysql mysql-server &&

 sudo /sbin/chkconfig --level 2345 httpd on &&

 sudo /sbin/chkconfig --level 2345 mysqld on &&

 sudo /etc/rc.d/init.d/mysqld start &&

 sudo /etc/rc.d/init.d/httpd start

 CMD

end

Provisioning Tool (Chef)
%w{httpd httpd-devel php php-mbstring php-pdo php-mysql mysql-server}.each do |p|
 package p do
 action :install
 end
end

service "httpd" do
 action [:enable, :restart]
 supports :status => true, :start => true, :stop => true, :restart => true
end

service "mysqld" do
 action [:enable, :restart]
 supports :status => true, :start => true, :stop => true, :restart => true
end

Several Provisioning Tools

✤ There are many server management tools that are written in Ruby. It’s
better to learn Ruby although you are an infrastructure engineer.

Chef Ansible Puppet

DSL (Ruby based) DSL DSL

Client / Server (Agent) Agentless Client / Server (Agent)

Lots of related tools such as
knife, berkshelf, foodcritic… Few management tools Already old…

DSL(Ruby based) must be
learned Simple. a few to learn Unique DSL must be learned

Chef's Architecture

Architecture

✤ Basically the architecture is  
Client / Server model

✤ Every information is stored in Chef Server
and all nodes will access to Chef Server
(From clients to Chef Server) to retrieve
cookbooks, various attributes and so on

Basic Terminology #1
✤ Chef Server => The Chef Server acts as a hub for configuration data.
The Chef Server stores cookbooks, the policies that are applied to
nodes, and metadata that describes each registered node that is
being managed by the Chef Client

✤ Nodes => A node is any machine̶physical, virtual, cloud, network
device, etc.̶that is under management by Chef. Chef Client must be
installed

✤ Chef Client => Tool to be installed into Nodes. It can be run as
Service (daemon) or command line tool

Basic Terminology #2

✤ Cookbook => A cookbook is the fundamental unit of
configuration and policy distribution. A cookbook defines a
scenario and contains everything that is required to support that
scenario. Cookbook contains Recipe, Attributes, Files,
Templates and custom extensions

✤ Recipe => DSL (Ruby based) code to install or configure target
nodes. A cookbook can contain multiple recipes

NOTE: Chef Solo

✤ Chef also had a NON client / server mode named Chef Solo

✤ However, Chef Solo is now deprecated

✤ If you want to run Chef without Server, you are going to use Chef
Local Mode (via knife-zero)

✤ Many web resources still pointed out Chef Solo. However, you
need to remember the above.

Hands-on Environment

Environment Overview

Your Laptop

VirtualBox: Open source virtualisation tool provided by Oracle

Vagrant: Manage lightweight, reproducible, and portable development environments by HashiCorp

Node01

Hostname: node01
IP Address: 192.168.33.200
OS: Ubuntu 14.04
Chef Client was installed

Development

Hostname: development
IP Address: 192.168.33.10
OS: Ubuntu 14.04
Chef-DK / Docker was installed
vi / vim / emacs are available

Login to this virtual machine Machine to be provisioned

You can download VirtualBox from
https://www.virtualbox.org/

https://www.virtualbox.org/

You can download Vagrant from
https://www.vagrantup.com/

If you already installed Vagrant,
please update it to 1.8+

https://www.vagrantup.com/

Vagrant Basics
✤ Vagrant is one of the most popular open source tool to
manage development environments provided by HashiCorp

✤ Vagrant can run VirtualBox virtual machine, Docker machine,
Azure virtual machine and so on. Vagrant wraps the deferences

✤ Vagrantfile is the definition of the environment. Same Vagrantfile
produces same virtual environment. Thus your team members are
able to obtain the same development environment. It could be a
quite plus when you are developing something

Vagrantfile Example
Vagrant.configure(2) do |config|

 config.vm.define :development do |development|
 development.vm.box = 'ubuntu-14.04.4-chef-training-development-kit'
 development.vm.hostname = 'development'
 development.vm.network 'private_network', ip: '192.168.33.10'
 end

 config.vm.define :node01 do |node01|
 node01.vm.box = 'ubuntu-14.04.4-chef-training-node'
 node01.vm.hostname = 'node01'
 node01.vm.network 'private_network', ip: '192.168.33.200'
 end
end You can download the script from

http://bit.ly/224TbdH

http://bit.ly/224TbdH

Vagrant basic commands (built-in)

boot virtual machines
vagrant up

boot specified machine
vagrant up development

login to the specific machine
vagrant ssh development

reboot machines
vagrant reload [machine name]

stop machines
vagrant halt [machine name]

dispose machines
vagrant destroy [machine name]

add box as a template
vagrant box add box_name box_url

install plugin
vagrant plugin install plugin_name

Add boxes

✤ Add boxes (from terminal or command prompt)

vagrant box add ubuntu-14.04.4-chef-training-development-kit http://bit.ly/1W4FWtV
vagrant box add ubuntu-14.04.4-chef-training-node http://bit.ly/1PQjMEl

http://bit.ly/1W4FWtV
http://bit.ly/1PQjMEl

All preparations finished? Then…

✤ Move to the directory that contains Vagrantfile, and then execute
the command above (Terminal or Command Prompt)

✤ It will launch 2 virtual machines

✤ If it fails, please check logs or stderr

vagrant up

Writing first cookbook

Automate to install nginx

✤ nginx [engine x] is an HTTP and reverse proxy server. The
performance is better than Apache HTTP Server

✤ Now we are going to automate to install nginx via Chef

✤ Please login to virtual machine named “development” by typing
“vagrant ssh development” in terminal (OS X) or command
prompt (Windows)

Only For Windows User

✤ Unfortunately Vagrant on Windows does not provide “vagrant ssh”
functionality.

✤ Thus, if you want to login to virtual machine, open preferred ssh
client such as Teraterm or Putty and then ssh access to
192.168.33.10 with username: vagrant and password
vagrant

Login to development environment
✤ You can look at the message as follows

✤ Now you are in the Linux(Ubuntu) virtual machine

✤ Username is vagrant and the current path is /home/vagrant

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.2.0-27-generic x86_64)

 * Documentation: https://help.ubuntu.com/
Last login: Fri Apr 1 20:54:29 2016 from 10.0.2.2
vagrant@development:~$

Git setup

✤ Before staring hands-on, setup your git account as follows

git config --global user.name “Sushi Taro”
git config --global user.email taro@example.com

mailto:taro@example.com

Create Repository

✤ At first, create repository to store cookbooks, node information
and so on

chef generate repo chef-repo
cd chef-repo

“chef” command shows…
Installing Cookbook Gems:
Compiling Cookbooks...
Recipe: code_generator::repo
 * directory[/home/vagrant/chef-repo] action create (up to date)
 * template[/home/vagrant/chef-repo/LICENSE] action create_if_missing (up to date)
 * cookbook_file[/home/vagrant/chef-repo/.chef-repo.txt] action create_if_missing (up to date)
 * cookbook_file[/home/vagrant/chef-repo/README.md] action create_if_missing (up to date)
(snip)
 Recipe: code_generator::repo
 * cookbook_file[/home/vagrant/chef-repo/cookbooks/README.md] action create_if_missing (up to date)
 * execute[initialize-git] action run
 - execute git init .
 * template[/home/vagrant/chef-repo/.gitignore] action create_if_missing
 - create new file /home/vagrant/chef-repo/.gitignore
 - update content in file /home/vagrant/chef-repo/.gitignore from none to 3523c4
 (diff output suppressed by config)

Directory Tree

✤ “tree -L 2” shows the directory
structure and files.

✤ You can see “cookbooks”
directory that stores chef
cookbook.

vagrant@development:~/chef-repo$ tree -L 2
.
|-- chefignore
|-- cookbooks
| |-- example
| `-- README.md
|-- data_bags
| |-- example
| `-- README.md
|-- environments
| |-- example.json
| `-- README.md
|-- LICENSE
|-- README.md
`-- roles
 |-- example.json
 `-- README.md

6 directories, 9 files

Create nginx cookbook from template

✤ run “knife cookbook create
nginx -o ./cookbooks/“
command in the current
directory. It creates base files
that consist of the cookbook

✤ Confirm the structure following
to the right screenshot

vagrant@development:~/chef-repo$ tree -F 2 ./cookbooks/
nginx/
2 [error opening dir]
./cookbooks/nginx/
|-- attributes/
|-- CHANGELOG.md
|-- definitions/
|-- files/
| `-- default/
|-- libraries/
|-- metadata.rb
|-- providers/
|-- README.md
|-- recipes/
| `-- default.rb
|-- resources/
`-- templates/
 `-- default/

10 directories, 4 files

Implement cookbook

✤ edit ./cookbooks/nginx/recipes/
default.rb and input text
indicated at the right

✤ This intends to install nginx
package, enable nginx service
and run service

package 'nginx' do
 action :install
end

service 'nginx' do
 action [:enable, :start]
end

Setup Chef Client

✤ This command will install Chef Client in target node and create
configuration file in source environment

✤ After this command, you will find some new directories such as
“nodes” and “clients” in /home/vagrant/chef-repo/ directory

knife zero bootstrap 192.168.33.200 -x vagrant --sudo --ssh-password vagrant

Confirm the target node is registered

✤ “node01” will be shown

✤ If you are handling several environments, all nodes will be
displayed

knife node list -z

Set run_list

✤ This command means that we are going to apply the default
recipe in nginx cookbook to the target node named “node01”

✤ This command will update the configuration file “nodes/
node01.json”. Please confirm bottom of that file.

✤ You can specify multiple recipes at the same time

knife node run_list add node01 'recipe[nginx]' -z

Take a snapshot of Virtual Machine

✤ Run the command above in your host environment (NOT guest)

✤ “vagrant snapshot” is a built-in command to take snapshots and
restore them

✤ To shorten the waiting duration, it’s better to leverage various kind
of tools

vagrant snapshot save node01 node01_001

Apply changes to target server

✤ This command will apply changes to node01. In Chef World, we
usually say that node will be converged into specific state

✤ Open web browser and access to http://192.168.33.200

knife zero converge 'name:node01' -x vagrant --sudo -a knife_zero.host --ssh-password vagrant

http://192.168.33.200

Are you OK?

✤ If it works well, add and commit files via git as follows

git add .
git commit -m “initial commit”

✤ If your cookbook does not work, check stdout and try again

Template #1
✤ Chef can generate and provision
files by using template
functionality

✤ Try to change index.html for
nginx. Create a new file named
“index.html.erb” in
“cookbooks/nginx/templates/
default/” with the content
displayed in the right side

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<h1>Welcome to Chef Training</h1>
<p><%= node.name %></p>
</body>
</html>

Template #2
✤ Now, update the recipe

✤ Add highlighted section to
cookbooks/nginx/recipes/
default.rb

✤ Before converge, it’s better to
run “vagrant snapshot restore
node01 node01_001” at the
host machine to restore VM

package 'nginx' do
 action :install
end

template 'index.html' do
 path '/usr/share/nginx/html/index.html'
 owner ‘root’
 group ‘root’
 mode 0644
end

service 'nginx' do
 action [:enable, :start]
end

Apply changes to target server (Again)

✤ This command will apply changes to node01. In Chef World, we
usually say that node will be converged into specific state

✤ Open web browser and access to http://192.168.33.200

knife zero converge 'name:node01' -x vagrant --sudo -a knife_zero.host --ssh-password vagrant

http://192.168.33.200

Resource

✤ At this point, you tried “package”, “service”, “template” in your first
cookbook. These keywords are called as “resource”

✤ Chef has lots of built-in resources (See next page)

✤ You are going to write your own cookbook by leveraging various
resources

Resources (Excerpt…)

package user powershell_script ifconfig

template group ruby_block http_request

service remote_file cron link

file execute git log

directory script mount chai

Basic Terminology #3 & need to learn
✤ Attribute => Attribute(s) are variables that can be used when
provisioning. For example, when you create php environment, you may
want to set several variables in php.ini. You can set these values when
provisions.

✤ Role => You can define Roles as you like. Typically, web server role, db
server role, monitoring server role and so on. By using role, you can build
specific infrastructure by only selecting role(s) for setting several recipes

✤ Environment => You can have several environment such as development,
staging, production that have different environmental values(attributes)

Test automation

Why automated tests matter?
✤ Reduce risks

✤ Reduce repetitive manual processes

✤ Generate deployable software at any time and at any place

✤ Enable better project visibility

✤ Establish greater confidence in the software product from the
development team

Test Kitchen
✤ Test Kitchen is a test harness tool to execute your configured code
on one or more platforms in isolation

✤ See more details at http://kitchen.ci

✤ Test Kitchen launches isolated environment (using Vagrant, Docker,
AWS, Azure…), apply specified recipes in the cookbook, verify
results

✤ It supports many testing frameworks including Bats, shUnit2, RSpec,
Serverspec

http://kitchen.ci

Visit http://serverspec.org/

http://serverspec.org/

Preparation

✤ Test Kitchen provides test generator. Run command as follows

cd /home/vagrant/chef-repo/cookbooks/nginx
kitchen init -D kitchen-docker

✤ .kitchen.yml, chefignore, test/integration/default must be created

mkdir -p test/integration/default/serverspec/localhost

Write Tests
require “spec_helper”

describe package("nginx") do
 it { should be_installed }
end

describe service("nginx") do
 it { should be_enabled }
 it { should be_running }
end

describe port(80) do
 it { should be_listening }
end

describe file(“/usr/share/nginx/html/index.html”) do
 it { should be_file }
end

require “serverspec”

set :backend, :exec

test/integration/default/serverspec/
localhost/default_spec.rb

test/integration/default/serverspec/
spec_helper.rb

What are testing for?

✤ nginx package should be installed

✤ nginx service should be running

✤ nginx service should run after boot

✤ nginx should be listening on TCP/80

✤ index.html should exist

require “spec_helper”

describe package("nginx") do
 it { should be_installed }
end

describe service("nginx") do
 it { should be_enabled }
 it { should be_running }
end

describe port(80) do
 it { should be_listening }
end

describe file(“/usr/share/nginx/html/index.html”)
do
 it { should be_file }
end

Edit configuration and start verification

✤ Edit .kitchen.yml as noted in the left

✤ It means that test will run Ubuntu14
Docker machine

✤ Execute “kitchen test” and then
verification starts!!

✤ Verification will take a few minutes

driver:
 name: docker

provisioner:
 name: chef_solo

platforms:
 - name: ubuntu-14.04

suites:
 - name: default
 run_list:
 - recipe[nginx::default]
 attributes:

You can see the verification result

Run Tests with Jenkins
✤ It’s possible to run tests with Jenkins

✤ If you are interested in implement it, please try it later

✤ Install JDK8 (NOT JDK7), Jenkins into development machine as follows

sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk
wget http://pkg.jenkins-ci.org/debian-stable/binary/jenkins_1.642.4_all.deb
sudo dpkg -i jenkins_1.642.4_all.deb

How to write good cookbooks

Community Cookbooks
✤ Chef has a huge eco-system. Many cookbooks (see the table
below) were released by chef community. Visit https://
supermarket.chef.io/

mysql nginx apache2 postgresql

java git apt yum

php build-essential nodejs mongodb

ntp jenkins database python

docker tomcat rabbitmq elasticsearch

https://supermarket.chef.io/

Berkshelf : Dependency manager

✤ Especially in community cookbook, there might be some
dependencies on other cookbooks.

✤ To resolve this challenge, you can use Berkshelf. See http://
berkshelf.com/

✤ It is similar to other language package manager such as
composer(PHP), bundler(Ruby) and npm(Nodejs)

http://berkshelf.com/

Keep the code Clean

✤ Cookbook is equal to the procedure document. So readability and
maintainability is important (Also continuous integration matters)

✤ For example, Foodcritic verifies your cookbooks (static analysis)
like rubocop

✤ Keep cookbook small that meet the Single Responsibility principle

Questions?

